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Abstract

A fast implicit upwind algorithm for the solution of the time-
dependent Euler equations is presented for aerodynamic analysis
involving unstructured dynamic meshes. The spatial discretiza-
tion of the scheme is based on the upwind approach of Roe re-
ferred to as flux-difference splitting (FDS). The FDS approach is
naturally dissipative and captures shock waves and contact dis-
continuities sharply. The temporal discretization of the scheme
involves an implicit time-integration using a two-sweep Gauss-
Seidel relaxation procedure. The procedure is computationally
efficiemt for either steady or unsteady flow problems. The paper
gives a detailed description of the implicit upwind solution algo-
rithm along with results which assess the capability. The results
are presented for the NACA 0012 airfoil and for the Boeing 747
aircraft. The 747 geometry includes the fuselage, wing, bori-
zontal and vertical tails, under-wing pylons, and flow-through
enginc nacelles. Euler solutions for the 747 aircraft on an un-
structured tetrahedral mesh containing approximately 100,000
cells were obtained to engineering accuracy in less than one
hour CPU time on a Cray-2 computer.

Introduction

In recent years significant progress has been made on de-
veloping numerical algorithms for the solution of the govern-
ing fluid flow equations based on unstructured meshes.'7 This
progress includes improvements in solution accuracy as well as
computational efficiency. For example, upwind methods have
been developed for unstructured meshes which are based on
the local wave propagation characteristics of the flow and con-
sequently produce highly accurate solutions.23 Most of these
upwind methods, however, use explicit time-marching schemes
10 integrate the governing equations in time to steady state. The
explicit approach is computationally efficient when applied to
meshes that are coarse, but the rate of convergence deteriorates
significantly when fincr meshes are used. For cases where finer
meshes are used, cither 2 multigrid strategy for convergence ac-
celeration or an implicit temporal discretization which allows
large time steps is required to obtain steady-state solutions in a
computationally efficient manner. Implicit upwind solution al-
gorithms for unstructured meshes in two dimensions have been
reported by the author in Ref. 8. These algorithms are simi-
lar 1o the point-implicit scheme of Thareja, et al.,? although the
methods of Ref. 8 are fully implicit and not point implicit. The

purpose of the paper is to report the extension of the implicit

discretization of Ref. 8 to unstructured meshes in three dimen-
sions. This new flow solver is a fast implicit upwind algorithm
for the solution of the time-dependent Fuler equations, for acro-
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dynamic analysis involving unstructured dynamic meshes. The
spatial discretization of the scheme is based on the upwind ap-
proach of Roe'® referred to as flux-difference-splitting (FDS).
The FDS approach is naturally dissipative and captures shock
waves and contact discontinuities sharply. The temporal dis-
cretization of the sckeme involves an implicit time-integration
using a two-sweep Gauss-Seidel relaxation procedure. The pro-
cedure is computationally efficient for either steady or unsteady
flow problems. The paper gives a detailed description of the im-
plicit upwind solution algorithm along with results which assess
the capability. The results are presented for the NACA 0012
airfoil and for the Boeing 747 aircraft.

Euler Equations

In the present study the flow is assumed to be governed
by the three-dimensional time-dependent Euler equations which
may be written in integral form as

%/Q{IV + /(I:'n, + Fuy+Gn)dS =0 N
? [7:8]

where the vector of conserved variables (¢ and the convective
fluxes F, F, and (V are given by
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The velocities U, V, and W are defined by

U =u~—ur, =0 — e, We=w-z 3
where ry, y,, and z, are the grid speeds in the r.y, and :
directions, respectively, and the pressure p is given by the

equation of state for a perfect gas
l 2 y
p=(-1)|r- ;p(nz + v+ w?) 4

The above equations have been nondimensionalized by the
freestream density p, and the freestream speed of sound an.
Also, the second integral in Eq. (1) is a boundary integral result-
ing from application of the divergence theorem, and n;, n,, and
n. are Cartesian components of the unit normal to the boundary

surface.

Spatial Discretization

The spatial discretization is based on Roe's flux-difference
splitting which is herein implemented as a cell-centered scheme
whereby the flow variables are stored at the centroid of each
retrahedron and the control volume is simply the tetrahedron
itself. Consequently, the spatial discretization involves a flux
balance where the fluxes across the four faces of a given tetra-
hedron are summed as i

4 4
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where AS is the arca of the face. The flux vector /1 is
approximated by

"= I/(Q‘)+II(Q“)~|-1I(Q+*Q"')] (6)
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where Q= and Q' are the state variables to the left and right
of the cell face and A is the flux jacobian matrix given by
A1178¢). Also the tilde and the absolute value sign indicate that
the flux jacobian is evaluated using the so-called Roe-averaged
flow variables and the absolute value of the characteristic speeds.

The left and right states @~ and Q1. are determined by
upwind-biased interpolations of the primitive variables ¢. In
three dimensions, for a given tetrahedron j, for example, the
upwind-biased interpolation for ¢~ across the common face
between tetrahedra j and k is defined by

|
¢ =4+ Bl(l _N)A_,+“ )AL ¥))
where
Ay =q- )
A_=q - (8b)

In Egs. (7) and (8), ¢, and ¢ arc the vectors of primitive
variables at centroids j and &, respectively, and ¢, the vector of
primitive variables at node ¢ (the node of tetrahedron j opposite
to the face being considered), is determined by an inverse-

distance-weighted average of the flow variables in the tetrahedra
surrounding node i. The upwind-biased interpolation for g% is
determined similarly. Also the parameter « in Eq. (7) controls
a family of difference schemes by appropriately weighting A
and A,. On structured meshes it is casy to show that & = -1
yields a fully upwind scheme, x = 0 yields Fromm's scheme,
and x = 1 yields central differencing.

On highly stretched meshes, the formula for A, is modified
to be

Ja
Ay = m(flk -q;) &)

where « and b are the distances from the midpoint of the face to
the centroids of tetrahedra j and k, respectively. This formula
weights the flow variables in the interpolation formula (Eq.

(7)) differently 10 account for the stretching of the mesh. For

example, by substituting Eq. (9) into Eq. (7) and letting x = |

0=+ (10)
Furthermore, in calculations involving upwind-biased schemes,
oscillations in the solution near shock waves are expected to
occur. To eliminate these oscillations flux limiting is usually
required. The flux limiter modifies the upwind-biased interpo-

lations for ¢~ and ¢* such that, for example

g =q+ %[(1 — ks)A_ + (1 + xs)A4] (1)
where s is the flux limiter. In the present study, a continuously
differentiable flux limiter was employed which is defined by

AN+
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where ¢ is a very small number used to prevent division by zero
in smooth regions of the flow.

Temporal Discretization

The temporal discretization is an implicit time-marching
scheme involving a Gauss-Seidel relaxation procedure. , The
scheme is derived in general by first linearizing the flux vector
Il according to

an

ndl _ " e
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where 911/0¢) is the flux jacobian A, as discussed before, and
AQ = Q"' — Q". Linearizing both flux terms on the right-
hand-side of Eq. (6) using Eq. (13), and ignoring the tilde on
the flux jacobian, results in
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where [ is the identity matrix, “vol” is the volume of the tetra-
hedron j, and AQ,, is the change in flow variables in each
of the four tetrahedra adjacent to tetrahedron j. Also in Eq.



(14), A* and A~ are forward and backward flux jacobians, re-
spectively. For flux-difference splitting, the exact jacobian A
(derivative of the right-hand-side of Ey. (6) with respect to ()
is 100 expensive to compute and thus an approximate jacobian
is normally used. This is accomplished by constructing the ja-
cobians making use of the fact that the forward and backward
jacobians should have non-negative and non-positive eigenval-
ues (characteristic speeds), respectively. This is accomplished
by expressing altenatively the jacobians using similarity trans-
formations such that
AT = RAT R A7 = RATIRTT O (15)
where A* and A~ are diagonal matrices whose diagonal ele-
ments are the eigenvalues A% and A~ defined by
1 |

AT = SO0 AT= (A=) 6)
and [t is the matrix whose columns are the corresponding
eigenvectors.

Direct solution of the system of simultaneous equations

which results from application of Eq. (14) for all tetrahedra

in the mesh, requires the inversion of a large matrix with

large bandwidth which is computationally expensive. Instead, a

Gauss-Scidel relaxation approach is used 10 solve the equations

whereby the summation involving AQ,, is moved to the right

hand side of Eq. (14). The terms in this summation are then

evaluated for a given time step using the most recently computed

values for AQ,,,. The solution procedure then involves only the

inversion of a 5 x 5 matrix (represented by the terms in square

brackets on the left hand side of Eq. (T4)) for each tetrahedron _
in the mesh. Also, although the procedure is implemented for
application on (randomly-ordered) unstructured meshes, it is not

a point Gauss-Seidel procedure. The method is in fact more like

line Gauss-Seidel since the list of tetrahedra that make up the

unstructured mesh is re-ordered from upstream to downstream,

and the solution is obtained by sweeping two times through the

mesh as dictated by stability considerations: The first sweep is

performed in the direction from upstream o downstream and

the second sweep is from downstream 10 upstream. For purely

supersonic Aows the second sweep is unnccessary.

Boundary Conditions

To impose the flow tangency boundary conditions along the
surface of the vehicle, the flow variables are set within dummy
cells that are cffectively inside the gcometry being considered.
The velocity components within a dummy cell, {u, 0, w),, are
determined from the values in the cell j adjacent to_gﬁg:_,_,surface.
(u, v This is accomplished by first rotating the components
into a coordinate system that has a coordinate direction normal
to the boundary face. The sign of the velacity component in
this direction is changed (hence imposing no flow through the
face) and the three velocity companents are then rotated back
into the original r,y, = coordinatc system. After considerable

algebra this yiclds

u I~ 'Zn'i —2n,n, —Ingn; u
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v = | ~2nm, 1-2n —2nyn, v an
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where ng, ny, and n, are the z,y, and z components of the unit
vector that is normal to the boundary face. Also, pressure and
density within the dummy cell are set equal to the values in the
cell adjacent to the surface. o

After application of the upwind-biased interpolation formula
to determine ¢~ and g* at each face, the velocity components
are corrected to give a “strong” implementation of the surface
boundary condition according to

Ueorrected = U — nplun, +ny, + wn,)
(18)

Veorrected = U = y(un, +vny + wn;)

Weorrected = W — Ne(uny + vny +wn;)

In the farfield a characteristic analysis based on Riemann
invariants is used to determine the values of the flow variables on
the outer boundary of the grid. This analysis correctly accounts
for wave propagation in the farfield which is important for
rapid convergence to steady-state and serves as a “nonreflecting”
boundary condition for unsteady applications.

Results and Discussion

To assess the accuracy and efficiency of the implicit up-
wind solution algorithm, calculations were first performed in

- two dimensions for the NACA 0012 airfoil. These results were

obtained using the unstructured mesh shown in Fig. 1. The grid
has 3300 nodes and 6466 triangles, and extends 20 chordlengths
from the airfoil with a circular outer boundary. Also there are
110 points that lie on the airfoil surface. Steady-state calcula-
tions were performed for the airfoil at a freestream Mach number
of M., = 0.8 and an angle of attack of o = 1.25°. The results
were obtained using both the implicit relaxation time-marching
scheme and an explicit three-stage Runge-Kutta time-marching
scheme. The explicit results were obtained using a CFL number
of 4.0, with residual smoothing and local time-stepping to ac-
celerate convergence to steady state. The implicit results were
obtained using a CFL number of infinity. Such a large value
was used for the implicit results since the relaxation scheme
has maximum damping and hence fastest convergence for very
large time steps. This is in contrast with implicit approximate
factorization schemes which have maximum damping for CFL
numbers on the order of 10. Also, the flux jacobians of the
implicit scheme were updated only every twenty iterations.

_ A comparison of the convergence histories between explicit
and implicit time-marching is shown in Fig. 2(a). The “error”
in the solution was taken 10 be the L norm of the density
residual. As shown in Fig. 2(a), the explicit solution is slower to
converge than the implicit solution. The explicit solution takes
approximately 739 CPU secs. (2,682 iterations) on a Cray-2
computer (o converge o engineering accuracy, which is taken
10 be a three order of magnitude reduction in solution error. In
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Fig. 1 Partial view of unstructured mesh of triangles about
the NACA 0012 airfoil.

constrast, the implicit solution is converged to three orders of
magnitude in only approximately 362 secs. (1,251 iterations).
The resulting steady pressure distribution is shown in Fig. 2(b).
For this case there is a rclatively strong shock wave on the
upper surface of the airfoil near 62% chord and a relatively
~ weak shock wave on the lower surfuce near 30% chord. The

pressure distribution indicates that there is only one grid point
within the shock structure, on either the upper or lower surface
of the airfoil, due to the sharp shock capturing ability of the Roe
solver.

To assess the efficiency of the implicit upwind solution
algorithm in three dimensions, calculations were performed for
the Bocing 747 aircraft. These results were obtained using the
unstructured mesh shown in Fig. 3. The 747 geometry includes
the fuselage, the wing, horizontal and vertical tails, under-wing
pylons, and flow-through enginc nacelles.  The unstructured
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Fig. 2 Comparison of steady-state results for the NACA
0012 airfoil at Mo = 0.8 and o = 1.25°.

Fig. 3  Surface mesh of triangles for the Bocing 747 aircraft.
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Fig. 4 Comparison of convergence histories for the Boeing

747 aircraft at M., = 0.84 and o = 2.73°.

mesh for the 747 contains 101,475 tetrahedra and 19,055 nodes
for the half-span airplanc. Also there are 4,159 nodes and
8,330 triangles on the boundaries of the mesh which include
the airplane, the symmetry plane, and the farfield. Steady-state
calculations were performed for the aircraft at Al = 0.84 and
o = 2.73°. The results were obtained using both the implicit
and explicit time-marching schemes. Similar 1 the NACA 0012
cases, the explicit results were obtained for the 747 using a
CFL number of 4.0, with residual smoothing and local time-
stepping to accelerate convergence 10 steady state. The implicit
results were obtained using a CFL number of infinity and the
flux jucobians were updated only every twenty iterations.

A comparison of the convergence histories between explicit
and implicit time-marching is shown in Fig. 4. The explicit
solution required 8,251 CPU secs. (1,124 iterations) on a Cray-
2 computer 1o converge the solution three orders of magnitude,

whereas the implicit solution required less than half of that, or
3,578 secs. (522 steps). The resulting steady pressure coefficient
contours on the surface of the 747 aircraft are shown in Fig.
5. The contours indicate that there is a significant amount of
flow compression on the nose of the aircraft, along the inboard
leading edge of the wing, and inside the cowl of the engine
nacelle. There is flow expansion on the forward fuselage, on the
horizontal and vertical tail surfaces, and on the upper surface of
the wing terminated by a shock wave. Additional details of the
mesh and pressure contours on the outboard pylon and engine
nacelle are shown in Fig. 6. These contours show further flow
expansion on the outside of the cowl and within the inner core
of the engine.

Concluding Remarks

A fast implicit upwind algorithm for the solution of the
time-dependent Euler equations was presented for aerodynamic
analysis involving unstructured dynamic meshes. The spatial
discretization of the scheme is based on the upwind approach
of Roe referred to as flux-difference splitting (FDS). The FDS
approach is naturally dissipative and captures shock waves and
contact discontinuities sharply. The temporal discretization of
the scheme involves an implicit time-integration using a two-
sweep Gauss-Seidel relaxation procedure. The procedure is
computationally efficient for either steady or unsteady flow prob-
lems. Results were presented for the NACA 0012 airfoil and
for the Boeing 747 aircraft. The 747 geometry included the
fuselage, wing, horizontal and vertical tails, under-wing pylons,
and flow-through engine nacelles. Euler solutions for the 747
aircraft on an unstructured tetrahedral mesh containing approx-
imately 100,000 cells were obtained to engincering accuracy in
less than one hour CPU time on a Cray-2 computer.

Fig. 5  Steady pressure coefficient contours on the Boeing 747 aircraft at
My, =084 and 0 = 2.73°.
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